

Zhong-Bo Kang

RIKEN BNL Research Center Brookhaven National Laboratory

Brookhaven Summer Program on Nucleon Spin Physics Upton, NY, July 14–27, 2010

based on work with Gamberg ,Qiu, Vogelsang, Yuan, Zhou

Outline

- Introduction
- Collinear factorization approach:
 - Basic formalism
 - Quark and gluon contributions
 - pT behavior
 - Global analysis
 - Twist-3 fragmentation function contribution
- TMD approach:
 - Generalized Parton Model (GPM)
 - Process-dependent Sivers function
- Summary

A_N Definition: Single Transverse Spin Asymmetry (SSA)

 Consider the scattering of a transversely polarized nucleon with another nucleon, observe a particle going left or right: left-right asymmetry

$$A_N = \frac{N_L - N_R}{N_L + N_R}$$

- Because of rotational symmetry, this corresponds to an asymmetry relate to the difference of the cross section when the spin of the incoming nucleon is flipped
 - Spin-averaged cross section: $\sigma(\ell) = \frac{1}{2} \left[\sigma(\ell, \vec{s}) + \sigma(\ell, -\vec{s}) \right]$
 - Spin-dependent cross section: $\Delta \sigma(\ell, \vec{s}) = \frac{1}{2} \left[\sigma(\ell, \vec{s}) \sigma(\ell, -\vec{s}) \right]$
 - Single transverse-spin asymmetry (SSA):

$$A_N \equiv \frac{\Delta \sigma(\ell, \vec{s})}{\sigma(\ell)} = \frac{\sigma(\ell, \vec{s}) - \sigma(\ell, -\vec{s})}{\sigma(\ell, \vec{s}) + \sigma(\ell, -\vec{s})}$$

Experiment: Single Spin Asymmetries

Fermilab E704, STAR, PHENIX, BRAHMS, COMPASS, HERMES, JLAB:

SSAs are observed in various experiments at different √s

SSA corresponds to a T-odd triplet product

• SSA measures the correlation between the hadron spin and the production plane, which corresponds to $\vec{s}_p \cdot (\vec{p} \times \vec{\ell})$

$$p^{\uparrow}p
ightarrow \pi(\ell)X$$

 Such a product is (naive) odd under time reversal (T-odd), thus they can arise in a time-reversal invariant theory (eg, QCD) only when there is a phase between different spin amplitudes

$$ightharpoonup A_N \propto i \vec{s}_p \cdot (\vec{p} \times \vec{\ell})$$

- the phase "i" is required by time-reversal invariance
- covariant form: $A_N \propto i \epsilon^{\mu \nu \alpha \beta} p_\mu s_\nu \ell_\alpha p_\beta'$

Nonvanishing A_N requires a phase, a helicity flip, and enough vectors to fix a scattering plane

SSA vanishes at leading twist in collinear factorization

At leading twist formalism: partons are collinear

Kane, Pumplin, Repko, 1978

- lacktriangle generate phase from loop diagrams, proportional to $lpha_s$
- \blacksquare helicity is conserved for massless partons, helicity-flip is proportional to current quark mass m_{q}

Therefore we have

$$A_N \sim \alpha_s \frac{m_q}{\sqrt{s}} \to 0$$

■ $A_N \neq 0$: result of parton's transverse motion or correlations!

Two mechanisms to generate SSA in QCD

- SSA is related to parton's transverse motion
- TMD approach: Transverse Momentum Dependent distributions probe the parton's intrinsic transverse momentum
 - Sivers function: in Parton Distribution Function (PDF)
 Sivers 90
 - Collins function: in Fragmentation Function (FF)
 Collins 93
- Collinear factorization approach:
 - Twist-3 three-parton correlation functions: Qiu-Sterman matrix element, ...

 Efremov-Teryaev 82, 84, Qiu-Sterman 91, 98, ...
 - Twist-3 three-parton fragmentation functions:

Koike, 02, Zhou, Yuan, 09, Kang, Yuan, Zhou, 10

Relation between twist-3 and TMD approaches

- They apply in different kinematic domain:
 - TMD approach: need TMD factorization, applies for the process with two observed momentum scales: DY at small q_T

 $Q_1\gg Q_2$ $\begin{cases} Q_1 & \text{necessary for pQCD factorization to have a chance} \\ Q_2 & \text{sensitive to parton's transverse momentum} \end{cases}$

- Collinear factorization approach: more relevant for single scale hard process: inclusive pion production at pp collision
- They generate same results in the overlap region when they both apply:
 - Twist-3 three-parton correlation in distribution

 Ji, Qiu, Vogelsang, Yuan, 06, ...
 - Twist-3 three-parton correlation in fragmentation ← Collins function Zhou, Yuan, 09, Kang, Yuan, Zhou, 10

SSA in collinear factorization approach

Efremov-Teryaev, 1982, Qiu-Sterman, 1991

• When all observed scales $>> \Lambda_{QCD}$, collinear factorization should work:

How it works:

$$T_{q,F}(x,x)$$

some propagators in the tree diagrams go on-shell

$$\frac{1}{k^2 - m^2 + i\epsilon} = P \frac{1}{k^2 - m^2} - i\pi \delta(k^2 - m^2)$$

- phase: from hard scattering amplitudes (unpinched pole)
- spin flip: from interference between a quark state and a quark-gluon composite state
- Twist-3 quark-gluon correlation function $T_{q,F}(x,x)$:

$$T_{q,F}(x,x) = \int \frac{dy_1^- dy_2^-}{4\pi} e^{ixP^+y_1^-} \langle P, s_T | \bar{\psi}_q(0) \gamma^+ \left[e^{s_T \sigma n\bar{n}} F_{\sigma}^+(y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle$$

The sources of the twist-3 effects

Three places where the twist-3 effects could come from:

- From polarized hadron
- From unpolarized hadron
- From fragmentation function

$$\Delta\sigma_{A+B\to hX}(\ell_{\perp},\vec{s}_{T}) = \sum_{abc} \phi_{a/A}^{(3)}(x_{1},x_{2},\vec{s}_{T}) \otimes \phi_{b/B}(x') \otimes H_{ab\to c}(\ell_{\perp},\vec{s}_{T}) \otimes D_{c\to h}(z)$$

$$+ \sum_{abc} \delta q_{a/A}(x,\vec{s}_{T}) \otimes \phi_{b/B}^{(3)}(x'_{1},x'_{2}) \otimes H'_{ab\to c}(\ell_{\perp},\vec{s}_{T}) \otimes D_{c\to h}(z)$$

$$+ \sum_{abc} \delta q_{a/A}(x,\vec{s}_{T}) \otimes \phi_{b/B}(x') \otimes H''_{ab\to c}(\ell_{\perp},\vec{s}_{T}) \otimes D_{c\to h}^{(3)}(z_{1},z_{2})$$

Within each term, there could be several twist-3 correlation functions

Twist-3 correlation function in polarized nucleon

quark-gluon correlation:

$$\mathcal{M}^{\sigma}(x_{1}, x_{2}) = \int \frac{dy_{1}^{-}dy_{2}^{-}}{2\pi} e^{ix_{1}p^{+}y_{1}^{-} + i(x_{2} - x_{1})p^{+}y_{2}} \langle p, s_{T} | \bar{\psi}_{q}(0)gF^{\sigma +}(y_{2}^{-})\psi_{q}(y_{1}^{-}) | p, s_{T} \rangle$$

$$= \frac{1}{2} \left[/ n \epsilon^{\sigma s_{T} n \bar{n}} T_{q,F}(x_{1}, x_{2}) + \gamma^{5} / n i s_{T}^{\sigma} T_{\Delta q,F}(x_{1}, x_{2}) + \cdots \right]$$

Symmetry property:

$$T_{q,F}(x_1, x_2) = T_{q,F}(x_2, x_1)$$

$$T_{\Delta q,F}(x_1, x_2) = -T_{\Delta q,F}(x_2, x_1) \Rightarrow T_{\Delta q,F}(x, x) = 0$$

- Soft gluonic pole: $T_{q,F}(x,x)$
- Soft fermione pole: $T_{q,F}(0,x), T_{\Delta q,F}(0,x)$
- Relation between $T_{q,F}(x,x)$ and quark Sivers $f_{1T}^{\perp}(x,k_{\perp}^2)$

Boer, Mulders, Pijlman, 2003

$$T_{q,F}(x,x) = \int d^2k_{\perp} \frac{|\vec{k}_{\perp}|^2}{M_h} f_{1T}^{\perp}(x,k_{\perp}^2)$$

Guidance for the relative size

- pQCD factorization theorem, the twist-3 correlation functions are universal but unknown, which need to be extracted from the experimental data
 - Or lattice: see P. Haegler's talk (July 21)
- With limited data and too many correlation functions, hopefully one could start with fewer terms
- Model calculation is thus important at this stage
 - Model calculation for TMD is encoraging: See A. Courtoy's talk (July 20)
- Within diquark model, we have found

Kang, Qiu, Zhang, PRD81, 114030 (2010)

Soft fermionic correlation functions vanish

$$T_{\Delta q,F}(0,x) = -T_{\Delta q,F}(x,0) = 0$$
 $T_{q,F}(0,x) = T_{q,F}(x,0) = 0$

Only soft gluonic correlation function remains

$$T_{q,F}(x,x) \neq 0$$

Thus expect soft fermionic contribution small?

Kanazawa, Koike, arXiv:1005.1468

$T_{q,F}(x_1, x_2)$ in diquark model

 Within diquark model, quark-gluon correlation function comes from the following figure

• For soft-fermionic pole case: $(k^+ + q^+) = 0$

$$(p-k-q)^2 - M_s^2 + i\epsilon:$$

$$q^- = -\frac{1}{2(1-x-y)p^+} \left[\frac{y(k_\perp^2 + M_s^2)}{1-x} + 2k_\perp \cdot q_\perp + q_\perp^2 \right] + i\epsilon$$

$$q^2 + i\epsilon:$$

$$q^- = -\frac{q_\perp^2}{2|y|p^+} + i\epsilon$$

$$(k+q)^2 - m^2 + i\epsilon = -(k_{\perp} + q_{\perp})^2 - m^2 + i\epsilon$$

They are all in the upper half plane for q- integral

Twist-3 approach: initial success with only $T_{q,F}(x,x)$

Describe E704 data well with one parameter (valence quark approx.)

$$T_{u,F}(x,x) = \lambda_F \phi_u(x)$$
$$T_{d,F}(x,x) = -\lambda_F \phi_d(x)$$

$$\lambda_F = 0.07 \text{ GeV}$$

Qiu, Sterman, 1999

Twist-3 approach: initial success

• Describe both E704 and RHIC data simultaneously with a more sophisticated $T_{q,F}(x,x)$:

Kouvaris, Qiu, Vogelsang, Yuan, 2006

$$T_{q,F}(x,x) = N_q x^{\alpha_q} (1-x)^{\beta_q} \phi_q(x)$$

Besides $T_{q,F}(x,x)$, there are other twist-3 correlation functions. What about others, particularly gluon?

Twist-3 three-parton correlation functions

Three-gluon correlations:

$$\mathcal{M}^{\rho\sigma\lambda}(x_{1},x_{2}) = \int \frac{dy_{1}^{-}dy_{2}^{-}}{2\pi} e^{ix_{1}p^{+}y_{1}^{-}+i(x_{2}-x_{1})p^{+}y_{2}} \frac{1}{p^{+}} \langle p, s_{T} | F_{b}^{\rho+}(0) g F_{c}^{\sigma+}(y_{2}^{-}) F_{a}^{\lambda+}(y_{1}^{-}) | p, s_{T} \rangle$$

$$= \frac{1}{2} \left[(-g^{\rho\lambda})_{\perp} \epsilon^{\sigma s_{T} n \bar{n}} \left(C^{(f)} \widetilde{T}_{G}^{(f)}(x_{1},x_{2}) + C^{(d)} \widetilde{T}_{G}^{(d)}(x_{1},x_{2}) \right) + (-i\epsilon_{\perp}^{\rho\lambda}) i s_{T}^{\sigma} \left(C^{(f)} \widetilde{T}_{\Delta G}^{(f)}(x_{1},x_{2}) + C^{(d)} \widetilde{T}_{\Delta G}^{(d)}(x_{1},x_{2}) \right) + \cdots \right]$$

two color structures, thus two types of three gluon correlations

$$C^{(f)} = \frac{1}{N_c(N_c^2 - 1)}(-if_{abc}) \qquad C^{(d)} = \frac{N_c}{(N_c^2 - 4)(N_c^2 - 1)}(d_{abc})$$

symmetry property:

$$\widetilde{T}_G(x_1, x_2) = \widetilde{T}_G(x_2, x_1)$$

$$\widetilde{T}_{\Delta G}(x_1, x_2) = -\widetilde{T}_{\Delta G}(x_2, x_1) \Rightarrow \widetilde{T}_{\Delta G}(x, x) = 0$$

$$T_G^{(f)}(x,x) = \int d^2k_{\perp} \frac{|\vec{k_{\perp}}|^2}{M} f_{1T}^{\perp g}(x,k_{\perp}^2)$$

General pattern for gluon channels

General Feynman diagram:

General factorized form:

$$E_{\ell} \frac{d\Delta\sigma(S_{\perp})}{d^{3}\ell} = \epsilon^{\alpha\beta} S_{\perp}^{\alpha} \ell_{\perp}^{\beta} \left[T_{G}^{(f)}(x,x) \otimes H_{gb\to c}^{(f)} + T_{G}^{(d)}(x,x) \otimes H_{gb\to c}^{(d)} \right] \\ \otimes \phi_{b}(x') \otimes D_{c\to h}(z)$$

Typical diagrams

qg -> qg channel

Similar for gg -> qqbar, gg -> gg channels

Final results for three-gluon contributions

Factorized formula:

 $H_{gq \to g}^{(d)F} = \frac{1}{N^2} \frac{2(\hat{s} - \hat{u})(\hat{s}^2 + \hat{u}^2)}{\hat{s}\hat{t}\hat{s}\hat{t}}$

$$E_{\ell} \frac{d\Delta\sigma(S_{\perp})}{d^{3}\ell} = \frac{\alpha_{s}^{2}}{S} \sum_{j} \int \frac{dz}{z^{2}} D_{c\rightarrow h}(z) \int \frac{dx'}{x'} \frac{1}{x'S + T/z} \phi_{b}(x') \frac{\epsilon^{\alpha\beta} S_{\perp}^{\alpha} \ell_{\perp}^{\beta}}{z(-\hat{u})}$$

$$\times \left[x \frac{\partial}{\partial x} \left(\frac{T_{G}^{(f)}(x,x)}{x} \right) H_{gb\rightarrow c}^{(f)} + x \frac{\partial}{\partial x} \left(\frac{T_{G}^{(d)}(x,x)}{x} \right) H_{gb\rightarrow c}^{(d)} \right]$$

■ Hard parts for qg -> qg channel: $H_{gb\to c} = H^I_{gb\to c} + H^F_{gb\to c} \left(1 + \frac{\hat{u}}{\hat{t}}\right)$

$$\begin{array}{lll} H_{gq\to q}^{(f)I} &=& \left(-\frac{1}{N_c^2-1}\right) \frac{2(-\hat{t})(\hat{s}^2+\hat{t}^2)}{\hat{s}\hat{u}^2} + \frac{2}{N_c^2(N_c^2-1)} \left[\frac{\hat{s}}{-\hat{t}} + \frac{-\hat{t}}{\hat{s}}\right] \;, \\ H_{gq\to q}^{(d)I} &=& -H_{gq\to q}^{(f)I} \;, \\ H_{gq\to g}^{(f,d)I} &=& H_{gq\to q}^{(f,d)I}(\hat{t}\leftrightarrow\hat{u}) \;, \\ H_{gq\to q}^{(f)F} &=& \frac{1}{N_c^2-1} \frac{2\hat{s}(\hat{s}^2+\hat{t}^2)}{(-\hat{t})\hat{u}^2} - \frac{2}{N_c^2(N_c^2-1)} \left[\frac{\hat{s}}{-\hat{t}} + \frac{-\hat{t}}{\hat{s}}\right] \;, \\ H_{gq\to q}^{(d)F} &=& H_{gq\to q}^{(f)F} \;, \\ H_{gq\to q}^{(f)F} &=& \frac{1}{N_c^2-1} \frac{2(\hat{s}^2+\hat{u}^2)^2}{\hat{t}^2\hat{s}(-\hat{u})} \;, \end{array}$$

Physics relevant to RHIC spin program

Gluon's role on generating SSAs

Many other processes also receive contribution from tri-gluon correlations

- Single inclusive hadron: $p^{\uparrow}p \to \pi + X$ or D meson

- Single jet production: $p^{\uparrow}p \rightarrow jet + X$

- Direct photon: $p^{\uparrow}p \rightarrow \gamma + X$

- J/ Ψ production: $p^{\uparrow}p \rightarrow J/\psi + X$

- Drell-Yan: $p^\uparrow p o \left[\gamma^* o \ell ar{\ell}\,\right] + X$

• Global fitting with both $T_{q,F}(x,x)$ and $T_G(x,x)$ included

- Comparing theoretical SSAs with the experimental data from:
 - E704
 - STAR
 - PHENIX
- Extract first ever information on $T_G(x,x)$ (also update $T_{q,F}(x,x)$)

New surprise from experiments

pT dependence of asymmetry for pion production: puzzle?

- pT=0: A_N=0 no plane any more
- very large pT: approach to 0 higher-twist, suppressed by $1/p_T$

- pT=0: A_N=0 no plane any more
- very large pT: approach to 0 higher-twist, suppressed by $1/p_T$

A_N behavior from low pT to high pT

- pT=0: A_N=0 no plane any more
- very large pT: approach to 0 higher-twist, suppressed by $1/p_T$

Natural connection: all power resummation?

$$A_N \approx \frac{\alpha}{p_T} - \frac{\alpha'}{p_T^3} + \dots = \frac{\alpha}{p_T} \left(1 - \frac{\Delta^2}{p_T^2} + \dots \right) \approx \frac{\alpha}{p_T} \frac{1}{1 + \frac{\Delta^2}{p_T^2}} = \alpha \cdot \frac{p_T}{p_T^2 + \Delta^2}$$

$$\Delta^2 = \frac{\alpha'}{\alpha}$$

An:
$$\frac{1}{p_T}$$
 \rightarrow $\frac{p_T}{p_T^2 + \Delta^2}$

x_F behavior of the SSA

• Two fits: red solid without $T_G(x, x)$, blue dashed with $T_G(x, x)$

New fitting compared with STAR data:

Two fits:

Red solid: without $T_G(x, x)$

Blud dashed: with $T_G(x, x)$

Δ~3 GeV

Three-gluon correlation functions

- Seems three-gluon correlation functions are pretty small
 - T_G^(f) is small
 - T_G(d) is even smaller
- Pion is not very sensitive to gluon
- Still hoping open charm

Another surprise from experiments: eta meson

• SSA of η meson is much larger than Π^0 :

- STAR, arXiv: 0905.2840
- So far, η meson has looked like a "high-mass, low-yield π⁰"

Yellow Beam Single Spin Asymmetry

How should we solve this puzzle?

- Could it be described in twist-3 from PDF?
 - Unlikely

$$A_N \propto T_{a,F} \otimes \phi_{b/B} \otimes H_{ab \to c} \otimes D_{c \to \pi^0}$$

The only difference is coming from

- unpolarized fragmentation function for π^0 and η , which is similar

How should we solve this puzzle?

- Could it be described in twist-3 from PDF?
 - Unlikely

$$A_N \propto T_{a,F} \otimes \phi_{b/B} \otimes H_{ab \to c} \otimes D_{c \to \pi^0}$$

The only difference is coming from

- unpolarized fragmentation function for π^0 and η , which is similar
- Collinear version of Collins effect
 - correct twist-3 correlation function from FF Yuan, Zhou, PRL103, 052001 (2009)

Collins effect for single inclusive meson production in pp collisions

$$A_N \propto \delta \phi_{a/A} \otimes \phi_{b/B} \otimes H_{ab \to c} \otimes \hat{H}_{c \to \pi^0}$$

- Hard parts $H_{ab
 ightarrow c}$: Kang, Yuan, Zhou, PLB 2010, in press
- Model calculation of $\hat{H}_{c
 ightarrow \pi^0}$: Bacchetta, Gamberg, in progress

Twist-3 fragmentation contribution

Definition of twist-3 correlation function

$$\hat{H}(z) = \frac{z^2}{2} \int \frac{d\xi^-}{2\pi} e^{ik^+\xi^-} \frac{1}{2} \left\{ \text{Tr}\sigma^{\alpha+} \langle 0 | \left[iD_T^{\alpha} + \int_{\xi^-}^{+\infty} d\zeta^- g F^{\alpha+}(\zeta^-) \right] \psi(\xi) | P_h X \rangle \right. \\ \times \left. \langle P_h X | \bar{\psi}(0) | 0 \rangle + h.c. \right\}$$

Related to Collins function:

$$\hat{H}(z) = \int d^2 p_T \frac{|\vec{p}_T|^2}{2M_h} H_1^{\perp}(z, p_T^2)$$

Derivative piece only so far:

$$E_{h} \frac{d^{3} \Delta \sigma(S_{\perp})}{d^{3} P_{h}} = \epsilon_{\perp \alpha \beta} S_{\perp}^{\alpha} \frac{2\alpha_{s}^{2}}{S} \sum_{a,b,c} \int_{x'_{min}}^{1} \frac{dx'}{x'} f_{b}(x') \frac{1}{x} h_{a}(x) \int_{z_{min}}^{1} \frac{dz}{z} \left[-z \frac{\partial}{\partial z} \left(\frac{\hat{H}(z)}{z^{2}} \right) \right]$$

$$\times \frac{1}{x'S + T/z} \left(\frac{P_{h}^{\beta}}{z} \right) \frac{x - x'}{x(-\hat{u}) + x'(-\hat{t})} H_{ab \to c}(\hat{s}, \hat{t}, \hat{u})$$

Twist-3 fragmentation contribution

Definition of twist-3 correlation function

$$\hat{H}(z) = \frac{z^2}{2} \int \frac{d\xi^-}{2\pi} e^{ik^+\xi^-} \frac{1}{2} \left\{ \text{Tr}\sigma^{\alpha+} \langle 0| \left[iD_T^{\alpha} + \int_{\xi^-}^{+\infty} d\zeta^- g F^{\alpha+}(\zeta^-) \right] \psi(\xi) | P_h X \rangle \right. \\ \times \left. \langle P_h X | \bar{\psi}(0) | 0 \rangle + h.c. \right\}$$

Related to Collins function:

$$\hat{H}(z) = \int d^2 p_T \frac{|\vec{p}_T|^2}{2M_h} H_1^{\perp}(z, p_T^2)$$

Derivative piece only so far:

$$E_{h} \frac{d^{3} \Delta \sigma(S_{\perp})}{d^{3} P_{h}} = \epsilon_{\perp \alpha \beta} S_{\perp}^{\alpha} \frac{2\alpha_{s}^{2}}{S} \sum_{a,b,c} \int_{x'_{min}}^{1} \frac{dx'}{x'} f_{b}(x') \frac{1}{x} h_{a}(x) \int_{z_{min}}^{1} \frac{dz}{z} \left[-z \frac{\partial}{\partial z} \left(\frac{\hat{H}(z)}{z^{2}} \right) \right]$$

$$\times \frac{1}{x'S + T/z} \left(\frac{P_{h}^{\beta}}{z} \right) \frac{x - x'}{x(-\hat{u}) + x'(-\hat{t})} H_{ab \to c}(\hat{s}, \hat{t}, \hat{u})$$

Kang, Koike, Yuan, Zhou, hope to work out complete piece

Some rough predictions

Model for H(z):

$$\hat{H}(z) = C_f z^a (1-z)^b D(z)$$

- b=0 from power counting arguments at z->1
- \bullet a=1, 2, 4 with C_f=-0.4
- Estimate for pi0 production

Size of contribution to SSA depends on H(z), need more data or independent measurements (jet production to separate, or from BELLE?)

Some rough predictions

Model for H(z):

$$\hat{H}(z) = C_f z^a (1 - z)^b D(z)$$

- b=0 from power counting arguments at z->1 Brodsky, Yuan, 2006
- \bullet a=1, 2, 4 with C_f=-0.4
- Estimate for pi0 production

Size of contribution to SSA depends on H(z), need more data or independent measurements (jet production to separate, or from BELLE?)

TMD approach for inclusive hadron production

Generalized Parton Model (GPM) approach

(assuming factorization)

$$\mathrm{d}\sigma^{\uparrow} = \sum_{a,b,c=q,ar{q},g} f_{a/p^{\uparrow}}(x_a,m{k}_{\perp a}) \otimes f_{b/p}(x_b,m{k}_{\perp b}) \otimes \mathrm{d}\hat{\sigma}^{ab o cd}(m{k}_{\perp a},m{k}_{\perp b}) \otimes D_{\pi/c}(z,m{p}_{\perp \pi})$$
 single spin effects in TMDs

M.A., M. Boglione, U. D'Alesio, E. Leader, S. Melis, F. Murgia, A. Prokudin, ... (first proposed by Field-Feynman in unpolarized case)

General diagram for the effects

Assume a TMD factorization is valid:

Sivers effect in the GPM approach

- The general formalism:
 - Spin-dependent cross section:

$$d\Delta\sigma \propto f_{1T}^{\perp}(x_a, k_{aT}) \otimes f_{b/B}(x_b, k_{bT}) \otimes H_{ab \to c}^{U} \otimes D_{h/c}(z_c, p_T)$$

Spin-averaged cross section:

$$d\sigma \propto f_{a/A}(x_a, k_{aT}) \otimes f_{b/B}(x_b, k_{bT}) \otimes H^{U}_{ab \rightarrow c} \otimes D_{h/c}(z_c, p_T)$$

Use Sivers function extracted in 0.15
 SIDIS, one could make some
 reasonable description of the
 RHIC data

Sivers function needs initial and final state interaction

- Initial- and final-state interaction is very important for Sivers function, which provides the necessary phase to have non-vanishing Sivers function
- Difference between initial and final state interactions

DY: repulsive

SIDIS: attractive

$$\Delta^N f_{q/h\uparrow}^{\text{SIDIS}}(x, k_{\perp}) = -\Delta^N f_{q/h\uparrow}^{\text{DY}}(x, k_{\perp})$$

Sivers function is not universal

- Initial and final state interaction leads to non-trivial gauge link used to define TMD PDF (or Sivers function)
- Gauge link could be different for different process, thus TMD PDFs are not universal
- Sivers function in inclusive hadron production is different from those measured in SIDIS (or DY)
 - One cannot use Sivers function measured in SIDIS to direct calculate SSA for inclusive hadron production in pp collision as in GPM model
- Question: how to take into account the process-dependence of the Sivers function

Gauge link for different process are derived

Gauge link in SIDIS and DY

Gauge link in qq' -> qq' process:

To first non-trivial order (one-glun exchange), one could find:

$$f_{1T}^{\perp}(x,k_{\perp})|_{qq'\to qq'} = \frac{N_c^2 - 5}{N_c^2 - 1} f_{1T}^{\perp \text{SIDIS}}(x,k_{\perp})$$

Gauge link for different process are derived

Gauge link in SIDIS and DY

Gauge link in qq' -> qq' process: Bomhof, Mulders, Pijlman ... 06, 07, 08

$$\mathcal{U}_{qq' \to qq'} = \frac{N_c^2 + 1}{N_c^2 - 1} \frac{\text{Tr}[\mathcal{U}^{[\Box]}]}{N_c} \mathcal{U}^{[+]} - \frac{2}{N_c^2 - 1} \mathcal{U}^{[\Box]} \mathcal{U}^{[+]}$$

$$\mathcal{U}^{\square} =$$

To first non-trivial order (one-glun exchange), one could find:

$$f_{1T}^\perp(x,k_\perp)|_{qq'\to qq'} = \frac{N_c^2-5}{N_c^2-1}f_{1T}^\perp \mathrm{SIDIS}(x,k_\perp) \qquad \qquad \text{Kang, Gamberg, 2010}$$

Predictions with process-dependent Sivers function

 Do the calculation more consistently: take into account the processdependence of the Sivers function

Red solid: with process dependence in Sivers function

Blue dashed: without

 If GPM approach is correct, then the SSA for inclusive pion probably does not come from Sivers effect

Predictions with process-dependent Sivers function

 Do the calculation more consistently: take into account the processdependence of the Sivers function

Kang, Gamberg, 2010

Red solid: with process dependence in Sivers function

Blue dashed: without

 If GPM approach is correct, then the SSA for inclusive pion probably does not come from Sivers effect

Summary

- Single transverse-spin asymmetry is directly connected to the parton's transverse motion
 - an excellent probe for the parton's transverse motion
- More correlation functions (than spin-avg case) are involved, much theoretical progress made for PDF side
 - A better way to describe pT behavior is provided
 - Three-gluon correlation functions are extracted from pion data
- For FF side, a sizable asymmetry could also be generated.
 - Need more data to constrain the relevant twist-3 fragmentation correlation
- With process-dependence included in the description of the GPM approach for inclusive pion, we typically have very small asymmetry

Summary

- Single transverse-spin asymmetry is directly connected to the parton's transverse motion
 - an excellent probe for the parton's transverse motion
- More correlation functions (than spin-avg case) are involved, much theoretical progress made for PDF side
 - A better way to describe pT behavior is provided
 - Three-gluon correlation functions are extracted from pion data
- For FF side, a sizable asymmetry could also be generated.
 - Need more data to constrain the relevant twist-3 fragmentation correlation
- With process-dependence included in the description of the GPM approach for inclusive pion, we typically have very small asymmetry

Thank you!

Backup